Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1162963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213512

RESUMO

Introduction: Balamuthia (B.) mandrillaris is a free-living amoeba that can cause rare yet fatal granulomatous amoebic encephalitis (GAE). However, efficacious treatment for GAE is currently unavailable, especially when genomic studies on B. mandrillaris are limited. Methods: In this study, B. mandrillaris strain KM-20 was isolated from the brain tissue of a GAE patient, and its mitochondrial genome was de novo assembled using high-coverage Nanopore long reads and Illumina short reads. Results and Discussion: Phylogenetic and comparative analyses revealed a range of diversification in the mitochondrial genome of KM-20 and nine other B. mandrillaris strains. According to the mitochondrial genome alignment, one of the most variable regions was observed in the ribosomal protein S3 (rps3), which was caused by an array of novel protein tandem repeats. The repeating units in the rps3 protein tandem region present significant copy number variations (CNVs) among B. mandrillaris strains and suggest KM-20 as the most divergent strain for its highly variable sequence and highest copy number in rps3. Moreover, mitochondrial heteroplasmy was observed in strain V039, and two genotypes of rps3 are caused by the CNVs in the tandem repeats. Taken together, the copy number and sequence variations of the protein tandem repeats enable rps3 to be a perfect target for clinical genotyping assay for B. mandrillaris. The mitochondrial genome diversity of B. mandrillaris paves the way to investigate the phylogeny and diversification of pathogenic amoebae.

2.
Cancers (Basel) ; 13(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885177

RESUMO

Early diagnosis and treatment do not prevent the high morbidity and poor prognosis of oral tongue squamous cell carcinoma (TSCC). Earlier studies have shown that ARG1 signaling is deregulated in TSCC. Here, we investigated the complexity of ARG1 metabolism in this cancer subsite to appreciate the therapeutic potential of this potential biological vulnerability. Various functional studies show that ARG1 overexpression in oral cancer cells inhibits cell proliferation and invasion compared with controls. Further, RNA-sequencing revealed numerous differentially expressed genes (DEGs) and associated networks were dysregulated by ARG1 overexpression, including hypoxia-inducible factor (HIFα) signaling, the natural killer cell signaling pathway and interferon signaling. Our work provides a foundation for understanding the mechanism of action of disrupted arginine metabolism in oral tongue squamous cell carcinoma. This may impact the community for developing further therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...